HIT Consultant Insightful coverage of healthcare innovation
 

data warehouse

Results 76 - 100 of 214Sort Results By: Published Date | Title | Company Name
Published By: IBM     Published Date: Nov 08, 2017
In this paper, you'll learn how organizations are adopting increasingly sophisticated analytics methods, that analytics usage trends are placing new demands on rigid data warehouses, and what's needed is hybrid data warehouse architecture that supports all deployment models.
Tags : 
data warehouse, analytics, ibm, deployment models
    
IBM
Published By: Group M_IBM Q1'18     Published Date: Jan 23, 2018
In this paper, you'll learn how organizations are adopting increasingly sophisticated analytics methods, that analytics usage trends are placing new demands on rigid data warehouses, and what's needed is hybrid data warehouse architecture that supports all deployment models.
Tags : 
data warehouse, analytics, hybrid data warehouse, development model
    
Group M_IBM Q1'18
Published By: Group M_IBM Q418     Published Date: Oct 15, 2018
The enterprise data warehouse (EDW) has been at the cornerstone of enterprise data strategies for over 20 years. EDW systems have traditionally been built on relatively costly hardware infrastructures. But ever-growing data volume and increasingly complex processing have raised the cost of EDW software and hardware licenses while impacting the performance needed for analytic insights. Organizations can now use EDW offloading and optimization techniques to reduce costs of storing, processing and analyzing large volumes of data. Getting data governance right is critical to your business success. That means ensuring your data is clean, of excellent quality, and of verifiable lineage. Such governance principles can be applied in Hadoop-like environments. Hadoop is designed to store, process and analyze large volumes of data at significantly lower cost than a data warehouse. But to get the return on investment, you must infuse data governance processes as part of offloading.
Tags : 
    
Group M_IBM Q418
Published By: Oracle     Published Date: Sep 21, 2018
Agility and speed are required in the cloud economy. Modernize data warehouses with built-in adaptive machine learning to eliminate manual labor for administrative tasks. With Oracle, businesses can now build data warehouses or data marts in minutes.
Tags : 
    
Oracle
Published By: Group M_IBM Q119     Published Date: Mar 04, 2019
One of the biggest changes facing organizations making purchasing and deployment decisions about analytic databases — including relational data warehouses — is whether to opt for a cloud solution. A couple of years ago, only a few organizations selected such cloud analytic databases. Today, according to a 2016 IDC survey, 56% of large and midsize organizations in the United States have at least one data warehouse or mart deploying in the cloud.
Tags : 
    
Group M_IBM Q119
Published By: Group M_IBM Q119     Published Date: Mar 04, 2019
There can be no doubt that the architecture for analytics has evolved over its 25-30 year history. Many recent innovations have had significant impacts on this architecture since the simple concept of a single repository of data called a data warehouse. First, the data warehouse appliance (DWA), along with the advent of the NoSQL revolution, selfservice analytics, and other trends, has had a dramatic impact on the traditional architecture. Second, the emergence of data science, realtime operational analytics, and self-service demands has certainly had a substantial effect on the analytical architecture.
Tags : 
    
Group M_IBM Q119
Published By: Group M_IBM Q119     Published Date: Mar 11, 2019
This report explores a new breed of data warehouse that can operate in a world of legacy on-premise systems while exploiting the potential of cutting edge technologies and deployment styles
Tags : 
    
Group M_IBM Q119
Published By: Group M_IBM Q119     Published Date: Mar 11, 2019
One of the biggest changes facing organizations making purchasing and deployment decisions about analytic databases — including relational data warehouses — is whether to opt for a cloud solution. A couple of years ago, only a few organizations selected such cloud analytic databases. Today, according to a 2016 IDC survey, 56% of large and midsize organizations in the United States have at least one data warehouse or mart deploying in the cloud
Tags : 
    
Group M_IBM Q119
Published By: Group M_IBM Q119     Published Date: Mar 11, 2019
In this paper, we focus on the DWA and how it has evolved over the years since its introduction. The XDW architecture is then described, in which the need to maintain the data warehouse is documented while adding new components and capabilities to extend the analytical capabilities. This section also discusses the appropriate usage of appliances within the XDW. The rest of the paper covers the benefits from implementing the DWA, the selection considerations for them and what the future holds for them.
Tags : 
    
Group M_IBM Q119
Published By: Group M_IBM Q2'19     Published Date: Apr 02, 2019
As the foundation for most critical business decisions, today's data environments are not just a vital piece of IT infrastructure, but key component of corporate strategy.
Tags : 
    
Group M_IBM Q2'19
Published By: Group M_IBM Q2'19     Published Date: Apr 02, 2019
One of the biggest changes faces organizations making purchasing and deployment decisions about analytic databases -- including relational data warehouses -- is whether to opt for a cloud solution.
Tags : 
    
Group M_IBM Q2'19
Published By: Group M_IBM Q2'19     Published Date: Apr 02, 2019
There can be no doubt that the architecture for analytics has evolved over its 25-30 year history. Many recent innovations have had significant impacts on this architecture since the simple concept of a single repository of data called a data warehouse. First, the data warehouse appliance (DWA), along with the advent of the NoSQL revolution, selfservice analytics, and other trends, has had a dramatic impact on the traditional architecture. Second, the emergence of data science, realtime operational analytics, and self-service demands has certainly had a substantial effect on the analytical architecture.
Tags : 
    
Group M_IBM Q2'19
Published By: Group M_IBM Q3'19     Published Date: Jun 27, 2019
The enterprise data warehouse (EDW) has been at the cornerstone of enterprise data strategies for over 20 years. EDW systems have traditionally been built on relatively costly hardware infrastructures. But ever-growing data volume and increasingly complex processing have raised the cost of EDW software and hardware licenses while impacting the performance needed for analytic insights. Organizations can now use EDW offloading and optimization techniques to reduce costs of storing, processing and analyzing large volumes of data.
Tags : 
    
Group M_IBM Q3'19
Published By: Group M_IBM Q3'19     Published Date: Jul 01, 2019
With the right cloud solution, you can turn on and pay for extra resources when necessary. You could provide additional compute resources from your cloud data warehouse to regional offices for the few days per quarter when they need to run financial analyses—and avoid paying for those resources the rest of the quarter.
Tags : 
    
Group M_IBM Q3'19
Published By: Red Hat, Inc.     Published Date: Jul 10, 2012
Is data changing the way you do business?Is it inventory sitting in your warehouse? The good news is data-driven applications enhance online customer experiences, leading to higher customer satisfaction and retention, and increased purchasing.
Tags : 
it planning, data, data-driven applications, data challenges, data solutions, big data solutions, big data challenges, in-memory databases, web-abpplications, in-memory data grid, nosql, storage nodes, e-commerce applications, social applications, logisitcs applications, trading applications, data scaling, rest, memcached, hot rod
    
Red Hat, Inc.
Published By: SAS     Published Date: Nov 10, 2014
Learn how data is evolving and the 7 reasons why a comprehensive data management platform supersedes the data integration toolbox that you are using these days.
Tags : 
sas, data integration, data evolution, comprehensive data, data management, data virtualization, data warehouses, data profiling, metadata management
    
SAS
Published By: SAS     Published Date: Nov 10, 2014
Learn how this upcoming year should be the year you make your big data actionable and see what else you should be doing to maximize its potential.
Tags : 
sas, data integration, data evolution, comprehensive data, data management, data virtualization, data warehouses, data profiling, metadata management
    
SAS
Published By: OpTier     Published Date: Mar 11, 2013
In the Information Technology (IT) industry, 2012 has been the year of Big Data. From a standing start toward the end of the last decade, Big Data has become one of the most talked about topics.
Tags : 
optier, big data, enterprise data warehouse, edw, nosql
    
OpTier
Published By: Oracle     Published Date: Nov 06, 2012
The purpose of this white paper is to take a time-to-business-value look at financial services data warehousing technologies with a focus on the selection process and how it should take deeper considerations of the real-world implementation hurdles.
Tags : 
oracle, data, analytical data, data marts, industry-specific data warehouse, financial services
    
Oracle
Published By: Oracle     Published Date: Nov 06, 2012
The purpose of this white paper is to take a time-to-business-value look at financial services data warehousing technologies with a focus on the selection process and how it should take deeper considerations of the real-world implementation hurdles.
Tags : 
oracle, data, analytical data, data marts, industry-specific data warehouse, financial services
    
Oracle
Published By: Hortonworks     Published Date: Apr 05, 2016
Download this whitepaper to learn how Hortonworks Data Platform (HDP), built on Apache Hadoop, offers the ability to capture all structured and emerging types of data, keep it longer, and apply traditional and new analytic engines to drive business value, all in an economically feasible fashion. In particular, organizations are breathing new life into enterprise data warehouse (EDW)-centric data architectures by integrating HDP to take advantage of its capabilities and economics.
Tags : 
    
Hortonworks
Published By: Zebra Technologies     Published Date: Jun 21, 2017
Best practices for integrating mobile, wireless and data capture technologies into warehouse management. Download now!
Tags : 
    
Zebra Technologies
Published By: Oracle     Published Date: Oct 20, 2017
With the growing size and importance of information stored in today’s databases, accessing and using the right information at the right time has become increasingly critical. Real-time access and analysis of operational data is key to making faster and better business decisions, providing enterprises with unique competitive advantages. Running analytics on operational data has been difficult because operational data is stored in row format, which is best for online transaction processing (OLTP) databases, while storing data in column format is much better for analytics processing. Therefore, companies normally have both an operational database with data in row format and a separate data warehouse with data in column format, which leads to reliance on “stale data” for business decisions. With Oracle’s Database In-Memory and Oracle servers based on the SPARC S7 and SPARC M7 processors companies can now store data in memory in both row and data formats, and run analytics on their operatio
Tags : 
    
Oracle
Published By: Oracle     Published Date: Oct 20, 2017
Databases have long served as the lifeline of the business. Therefore, it is no surprise that performance has always been top of mind. Whether it be a traditional row-formatted database to handle millions of transactions a day or a columnar database for advanced analytics to help uncover deep insights about the business, the goal is to service all requests as quickly as possible. This is especially true as organizations look to gain an edge on their competition by analyzing data from their transactional (OLTP) database to make more informed business decisions. The traditional model (see Figure 1) for doing this leverages two separate sets of resources, with an ETL being required to transfer the data from the OLTP database to a data warehouse for analysis. Two obvious problems exist with this implementation. First, I/O bottlenecks can quickly arise because the databases reside on disk and second, analysis is constantly being done on stale data. In-memory databases have helped address p
Tags : 
    
Oracle
Published By: StreamSets     Published Date: Sep 24, 2018
The advent of Apache Hadoop™ has led many organizations to replatform their existing architectures to reduce data management costs and find new ways to unlock the value of their data. One area that benefits from replatforming is the data warehouse. According to research firm Gartner, “starting in 2018, data warehouse managers will benefit from hybrid architectures that eliminate data silos by blending current best practices with ‘big data’ and other emerging technology types.” There’s undoubtedly a lot to ain by modernizing data warehouse architectures to leverage new technologies, however the replatforming process itself can be harder than it would at first appear. Hadoop projects are often taking longer than they need to create the promised benefits, and often times problems can be avoided if you know what to avoid from the onset.
Tags : 
replatforming, age, data, lake, apache, hadoop
    
StreamSets
Start   Previous    1 2 3 4 5 6 7 8 9    Next    End
Search      

Add Research

Get your company's research in the hands of targeted business professionals.